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Abstract - To mitigate construction, industrial process, and seismic risks, in this paper, we introduce a hybrid Al-
based vibration monitoring system. The system records multi-dimensional vibration data and analyzes it using a
deep learning pipeline to forecast vibration pattern and magnitude. It employs a mechanically optimized beam for
improved sensitivity with reduced noise, and a six-axis IMU containing an accelerometer and gyroscope. Its real-
time alert in early warning mode is better than conventional methods by offering up to 5x signal gain and enhanced
micro-vibration detection. Scalable and cost-effective design in its support encompasses urban planning, seismic
resilience, and industrial safety.

Keywords - Ground Vibration Prediction, AI-Based Monitoring, Accelerometer and Gyroscope, Inertial Meas-
urement Unit (IMU), Real-Time Alert System, Early Warning System, Seismic Activity Monitoring, Human feed-

back, Vibration Signal Denoising.

1. INTRODUCTION

There has been more construction, mining, and seismic activity in the past few years, which has increased the
need for improved vibration detection and prediction systems. Conventional ground vibration monitoring tech-
niques tend to depend on cumbersome, costly seismographs or outdated mechanical systems. These techniques
are not sensitive or real-time enough for early warnings. This project offers a wiser, more affordable alternative:
an Al-based vibration prediction system which employs accelerometers and gyroscopes contained in a six-axis
IMU.

Using Al algorithms such as LSTM or Random Forest, we examine sensor readings to forecast future high-inten-
sity vibrations and send real-time alerts. This two-sensing technique blends quantitative information from the
IMU with qualitative observations, providing full vibration profiling on multiple axes. This system can alert indi-
viduals to potential issues in regions where there may be slight tremors or numerous human motions. Rather than
observing only by hand or with simple warning systems, it applies machine learning to detect patterns. This com-
bination of techniques catches subtle signs that larger vibrations are on the way, which is helpful both for keeping

humans safe and designing cities.
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This system isn't guesswork about what will happen; it's also being reliable regardless of what. Things such as
what kind of ground, how buildings are constructed, and what is below can influence how vibrations behave. The
traditional methods of discovering trouble aren't always accurate these days. This system relies on intelligent
computers that help us learn, so it improves at detecting problems and validating warnings even when things get
difficult.

The new project approach is user centered. It ensures that the platform remains straightforward to use for all,
regardless of technical competence. The interface is simplified with easy-to-use visual dashboards and unambig-
uous alert notifications. This makes it easy for users to clearly grasp system outputs and make decisions based on
valuable insights rather than be overwhelmed by complex technical information. The proposed solution also con-
nects with current world-wide initiatives towards intelligent city development and sustainability. As cities grow,
infrastructure faces new challenges such as continued construction, higher traffic vibrations, and external pres-
sures. As cities grow, infrastructure faces new challenges like ongoing construction, increased vibrations from
traffic, and environmental pressures. By using Al to monitor vibrations in urban areas, the system helps with better
infrastructure planning, supports the protection of structural integrity, and promotes the goals of sustainable urban

management.

2. LITERATURE REVIEW

Try and Gebhard highlighted the flexibility of IMU-based vibration monitoring beyond lab settings. Their work
showed that small sensors could be integrated into wearable systems or attached to structures, enabling continuous
activity tracking. The versatility of IMU sensors demonstrates their potential for broader use in civil and industrial
applications where portability and cost matter [1]. Xie et al. applied Particle Swarm Optimization (PSO) to predict
ground vibration velocity from long-hole blasting, showing the advantages of optimization algorithms over static
models due to their adaptability to explosive force changes. This data-driven approach emphasizes the potential
of combining Al techniques with sensor data to enhance prediction accuracy [2]. They also found that PSO-based
models reduce computation compared to conventional iterative optimization, making them suitable for real-time
applications such as construction blasting or seismic safety monitoring [2]. Ala et al. developed an Explainable
Al (XAI)-based model for predicting and improving blast-induced ground vibrations in surface mining. The
model’s interpretability helped stakeholders understand the reasoning behind predictions, stressing the importance
of transparency in Al monitoring systems used in critical environments [3]. Their study further enhanced XAl by
allowing domain experts to adjust the model based on variable importance. This collaboration between human
knowledge and machine intelligence increased model trustworthiness and practicality in real-world mining oper-
ations, ensuring responsible decision-making [3].

Firoozi and Firoozi conducted a systematic review of hybrid ML methods such as ensemble models and deep
neural networks for predicting peak ground vibration. They highlighted the importance of feature engineering and
signal preprocessing in handling accelerometer data, aligning with our real-time sensor data fusion approach [4].
A Springer review examined multiple AI and optimization techniques including Genetic Algorithms, Random
Forests, and Gradient Boosting for ground vibration prediction, providing a foundation for our comparative model

analysis [5].
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In mining, researchers proposed a swarm-optimized deep neural network for forecasting blast-induced vibration
intensity in open-pit mines. The model performed effectively on noisy datasets, showing its potential to handle
accelerometer and gyroscope data in real-world settings [6]. Research using Relevance Vector Machines (RVMs)
for predicting Peak Particle Velocity (PPV) in quarry blasting showed better performance with sparse data than
Support Vector Machines, highlighting the need for models capable of handling limited data in vibration predic-
tion systems [7].

Youwai and Pamungmoon used an explainable Al model to forecast pile-driving vibrations based on time-series
IMU data, emphasizing the importance of preserving temporal features during preprocessing. This directly in-
forms the structure of our vibration detection system using gyroscopes and accelerometers [8]. Teixeira et al.
explored neural machine translation to convert seismic wave patterns into petrophysical models. Though focused
on geology, their method offers a novel way to interpret ground vibrations as a "language," which could inform
our research [9]. Finally, the Wiley review on sensor-integrated machine systems emphasized combining physical
sensors with Al analytics for real-time industrial monitoring, supporting our goal of integrating human insights

with quantitative IMU data [10].

3. PROPOSED METHEDOLOGY
Micro-electromechanical systems (MEMS) like the 6-axis Inertial Measurement Unit (IMU) combining an accel-
erometer and a gyroscope are vital for detecting abnormal vibrations in terrains, structures, and machinery. The
accelerometer measures linear acceleration (e.g., shaking), while the gyroscope captures angular rotation (e.g.,
tilting). Undetected ground vibrations can signal structural failure or natural tremors. Traditional threshold-based
systems often miss subtle patterns or raise false alarms. To address this, a machine learning model can analyze
patterns, detect anomalies, and adapt using human-labeled data. The proposed system integrates sensor data, smart
feature extraction, ML-based real-time classification, and a feedback loop for continuous improvement ensuring
consistent detection and timely alerts.
Step-by-Step Methodology
1. Sensor Integration: The 6-axis IMU (MPU6050) measures acceleration (ax, ay, az) and rotation (gx, gy, gz),
connected via I2C to a microcontroller (Arduino/Raspberry Pi) at 50—100 Hz sampling.
2. Data Collection: The IMU streams real-time motion data with timestamps, stored locally or sent to a server.
3. Signal Pre-processing: A low-pass Butterworth filter removes noise; mean and median filters reduce jitters.
Features are extracted post-cleaning for fair model training.
4. Feature Extraction:

e Acceleration Magnitude: A = V(ax? + ay? + az?)

e Gyroscope Magnitude: G = V(gx? + gy? + g7?)

e Along with mean, max, std. dev., RMS, and dominant frequency (via FFT).
5. Data Labelling: Human experts label events as normal, moderate, or abnormal to create supervised datasets.
6. Model Training: Lightweight models like Random Forest or Decision Tree are trained and evaluated using
accuracy, precision, and F1-score.
7. Alert Triggers (Threshold + Al):

Normal: A <0.3g, G <50°s
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Moderate: 0.3 < A <0.6g

Abnormal: A > 0.6g or G > 100°/s

Al-driven predictions trigger alerts even if thresholds aren’t met.
8. Alert System: Detected anomalies send notifications via Wi-Fi/Bluetooth to a dashboard/app with timestamp,
location, and severity. On-site indicators (LED/Buzzer) also trigger.
9. User Feedback & Retraining: Users can dismiss false alarms; this feedback retrains and refines the model for
better accuracy.
10. Real-time Dashboard: Displays live acceleration/rotation plots and classification status (e.g., Green = Normal,
Red = Alert) with logs for analysis.
11. Multi-Sensor Extension: Multiple IMUs across zones sync to a central server for faster collective decisions.
12. Scalability & Future Work: Applicable to bridges, mines, and earthquake zones. Long-term data can support

forecasting using LSTMs or ConvNets for predictive insights.

4. Working Model of AI Powered Ground Vibration Prediction

IMU Sensor Preprocessing
Threshold -Based &
(Accelerometer & Gyroscope) (Filtering & Noise Reduction) Model ~Based Detection
Y \

Real Time Embedded Controllef Feature Extraction Alert System

(NI myRIO) (Mean, RMS, FFT, etc.) (App)

A
Machine Learning Model

Raw Data Collection | ¢ User Feedhack & Model
(Tramned Classifier) |

Retraining

Feeding for
Retraining

1. Vibration Source: It is the source of vibrations itself-from construction activities, machinery, and traffic to
natural tremors. It creates mechanical waves that travel into the ground or structures.
2. 6 Axis IMU sensor (Accelerometer + Gyroscope)
A 6-DOF (Degrees of Freedom) sensor capturing following:
e Linear acceleration (through accelerometer) in X, Y, and Z axes.
e Angular velocity (through gyroscope) in pitch, roll, and yaw.
Captures subtle to strong vibrations in real time. Physically connected to NI myRIO.
3. NI myRIO (Data Acquisition Unit) : Based on LabVIEW, the central controller in the system has the follow-

ing responsibilities to execute for the final output of the result:
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To gather raw sensor data through analog/digital I/O, Perform real-time processing and interface with software
modules (through LabVIEW) Advantage: Compact, real-time, educational-grade hardware suitable for vibration
monitoring

4. Signal Filtering and Pre-processing: Noise reduction using: Low-pass filters to eliminate high-frequency
sensor noise. High-pass filters to ignore baseline drifts. Normalizes and smooths the raw vibration data for better
ML input. To get the model prediction unbiased and on fair data so all the noise in the data get removed by feature
extraction and filtering. So, the model gets the optimized decision output.

5. Feature Extraction: Meaningful features for classification and prediction are extracted: RMS: measures en-
ergy of vibration. FFT: Frequency domain conversion of a signal for identification of dominant vibration frequen-
cies. Standard deviation: Measures variation of the signal and indicates severity of vibration. Kurtosis and Skew-
ness: Detect impulsive or spiky vibrations are associated mostly with faults or abi-normal activity.

6. Machine Learning Classifier: The models Random Forest and LSTM are being used. They are trained with
historical vibration data labelled as normal or not. Predicts: Whether incoming vibration is safe or critical, the
source or severity according to the learned patterns.

7. Detection Threshold and Model: A dual alertness system: Threshold Logic: Simple if-then rules (for example,
if RMS > .9, trigger alert), ML model output: The predicted output is used in defining risk levels. It incorporates

the smarts of an Al model into its hard-coded safety buffers for solid detection.

8. Alert System: When vibration is dangerous: buzzer or LED is activated on myRIO, Optional: SMS/Email alert
via LabVIEW web services or external GSM module. Alerts are instantaneous and local, with real-time processing
by myRIO.

9. Data Logging and Model Retraining: A log is maintained for every vibration incidence (either passing or
non-passing limits) and associated parameters. This recorded data is potentially beneficial for enhancing model
accuracy over time and for collecting information about the vibration trend of the machine. Furthermore, the
model can also be periodically retrained on these newly collected data to catch up with the changes in the evolution
of the environment.

10. Feedback Loop: Data coming out of prediction/logging is used for retraining and fine-tuning the ML mode.

Hence, the system tends to get smarter and more adaptive in course of time.

Table 1: COMPARATIVE ANALYSIS

MEMS accelerometers.

Criteria Existing Models Proposed Model (Our System)

Objective Basic seismic monitoring or scant | Real-time abnormal vibration pre-
vibration logging. Frequently does | diction and alerting with ML and
not include real-time alerting and | myRIO.
ML.

Sensor Types Primarily seismometers or isolated | 6-axis IMU sensors (accelerometer

+ gyroscope) for precise 3D motion
measurement.

Processing Hardware

Arduino, Raspberry Pi, or off-the-
shelf seismographs.

NI myRIO real-time, FPGA-ena-
bled hardware for accuracy and
high-speed I/O.
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Feature Extraction

Typically restricted to RMS or raw
data recording. No in-depth analyt-
ics.

Advanced capabilities such as
RMS, FFT, kurtosis, entropy, spec-
tral centroid utilized for ML.

Machine Learning

Rarely exercised or employs tradi-
tional thresholds solely.

Classifies vibrations as safe or
risky using SVM / LSTM / kNN.

Alert System

Threshold-based alarms or visual-
only logs. No dynamic Al

Al-driven alarms using RMS/FFT
+ ML output, displayed on UI or
external device.

Real-Time Analysis

Delayed or post-event only.

Real-time prediction and alarming
from live streaming sensor data.

acceleration).

Scalability Requires manual expansion, no Al | Can learn over time, get more ac-
adaptability. curate with more data collected.
Alert Trigger Range Hard-coded thresholds (e.g., 1.5g | Adaptive ML-based range; initial

RMS alert ~0.8g—1.2¢g (customiza-
ble).

Power Efficiency

High power for seismographs or ex-
ternal GPUs.

Low power embedded myRIO
board with high-efficiency pro-

cessing.
Cost Can be high due to specialized seis- | Cost-effective solution with stand-
mic equipment. ard IMU + myRIO + LabVIEW.
Accuracy Moderate; tends to report after | High: Pre-shock pattern and fre-
tremor. quency change detection using
ML.
IMPLEMENTATION

Vibration Source

4

6 —Axis IMU Sensor

h 4

Preprocessing

A 4

Feature Extraction

v

ML Model

Y

Alert System

Fig (2): Flow Chart of Implementation of Model

1. Sensor Integration: A 6-axis inertial measurement unit consisting of a 3-dimensional accelerometer and a 3-

dimensional gyroscope has been selected to capture linear as well as angular vibrations from the ground or struc-

tural surface.

2. Hardware Setup: The IMU has been mounted on the physical surface or structure selected for monitoring (for

e.g. ground near construction/mining activities).

3. Connection with NI myRIO: The IMU communicates with NI-myRIO through SPI or 12C protocol.
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4. Data acquisition: The NI myRIO allows for continuous data acquisition from the sensor without interruption
at real-time sampling rates relevant for analyzing vibration signals either 100 Hz or higher.

5. Preprocessing in LabVIEW: After data cleansing, noise can be filtered away through digital filters like low-
pass filters or moving-average filters.

6. Feature Extraction: LabVIEW estimates the following features from the real-time signal. RMS: Root Mean
Square value signifies the power of the signal. FFT: Fast Fourier Transform refers to frequency components anal-
ysis. Standard deviation: It refers to the variation in signals. Signal Entropy Peak Acceleration: Measures sudden
spikes in signal or randomness.

7. The machine learning model integration: A pre-trained classification model is integrated in LabVIEW (via
DLL or embedded logic) and classifies the signal as such: Normal vibration Abnormal/ dangerous vibration

8. Dual Criteria Threshold Check: If the RMS value exceeds a chosen threshold (e.g., > 0.8g) OR if the ML
model prediction is "abnormal", either event will trigger the alert.

9. Activation of Alert System: So in essence, once abnormal vibration is detected: Optional SMS/ Email alert
can be sent via the modules connected.

10. Data Logging: All vibration data, predictions, and timestamps are stored locally for analysis and future train-
ing. It will also have user feedback data for qualitative observation therefore the better and optimized prediction
will get.

11. User Interface (UI): Real-time waveform display (accelerometer/ gyroscope plots) Current status (normal/ab-
normal)

12. Alert logs and historical graph view: Real-Time Monitoring Loop. The system continuously monitors the
environment in a loop for instant response to vibration events.

Alert Triggering Criteria

Condition Sensor Range Threshold (example) Action
Normal Acceleration < 0.3g; No alert
Gyro <50°s
Moderate Vibration Acceleration between 0.3g—0.6g Log + Notify on app
Abnormal Vibration (Alert) Acceleration > 0.6g; Red Alert + Siren
Gyro > 100°/s

The alert system operates on acceleration (linear) and gyroscope (angular) thresholds to classify vibrations as
minor, moderate, or critical. This setup minimizes false alarms while ensuring fast responses to hazards. Under
normal conditions (accel < 0.3g, gyro < 50°/s), no alert is triggered filtering background noise and mild motion
to keep monitoring efficient. For moderate vibrations (0.3g—0.6g), the system logs data and sends early notifica-
tions to the connected app. This pre-alert phase improves real-time awareness and helps detect early signs of
imbalance, machinery faults, or small tremors.

For critical vibrations (accel > 0.6g or gyro > 100°/s), the system triggers a red alert with siren and visual warnings.
This high-priority response ensures immediate attention to risks like structural collapse, equipment failure, or

seismic activity.
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The tiered response design ensures precise classification with minimal false alerts by combining acceleration and

angular thresholds. Alerts are sent promptly via SMS, email, push notifications, or integrated systems like sirens

or display boards, ensuring redundancy even if one channel fails.

Each alert includes:

e Location of abnormal vibration/activity

e Severity level (low, medium, or critical)

e Identified cause (if available)

e  Safety instructions or action steps (e.g., evacuation, inspection).

Alerts are categorized by severity critical alerts go directly to emergency services, while minor ones are logged

for review. All alerts are stored for analysis to improve model accuracy and validate true or false events.

Thus, the alert system bridges detection and human response, ensuring timely, accurate, and actionable infor-

mation to mitigate vibration-related risks.

Table 2: Analysis of Sensor

Criteria

Single-Sensor
Only)

(Accelerometer

Multi-Sensor (Accelerometer +
Gyroscope)

Type of motion captured

Captures only linear acceleration,
limiting vibration analysis.

Captures both linear and angular
motion, giving a complete profile.

Measurement axes

Provides three-axis measurement
that may miss complex patterns.

Extends to six degrees of freedom,
offering richer vibration data.

Rotational detection

Fails to detect rotational disturb-
ances effectively.

Detects even minor rotational vi-
brations through gyroscopes.

Noise handling

Struggles with filtering environ-
mental noise.

Combines sensor data to improve
noise filtering.

Accuracy in noisy settings

More prone to false positives from
external interference.

Cross-verification across sensors
reduces false positives.

System reliability

Easy to implement but less reliable
in dynamic environments.

Performs well under dynamic con-
ditions with better robustness.

Long-term stability

Monitoring accuracy may drop due
to sensor drift.

Maintains stability by balancing
accelerometer and gyroscope data.

Sensitivity to microtremors

May not detect subtle precursors of
large vibrations.

Detects small-scale tremors using
combined sensing.

Predictive potential

Limited awareness restricts predic-
tive modeling accuracy.

Enables stronger predictive mod-
eling with diverse data.

Overall effectiveness

Simpler but inadequate for ad-
vanced prediction.

More complex but ensures higher
accuracy and reliability.

Noise handling

Struggles with filtering environ-
mental noise.

Combines sensor data to improve
noise filtering.
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Vibration detail

Gives only basic intensity readings
without direction.

Provides detailed vibration pro-
files including direction and inten-
sity.

Accuracy in noisy settings

More prone to false positives from
external interference.

Cross-verification across sensors
reduces false positives.

System reliability

Easy to implement but less reliable
in dynamic environments.

Performs well under dynamic con-
ditions with better robustness.

RESULT:

EVALUATING THE DEFINITIVE DEEP LEARNING MODEL

Training completed in 26.37 seconds.

EarlyStopping triggered: Model trai

FINAL MODEL ACCURACY ON TEST DATA: 76.16%

6/6

Abnormal
Normal

accuracy
macro avg
weighted avg

——— 1s 96ms/step
--- Final Classification Report ---
precision

recall fi-score support
0.00 0.00 41
1.00 0.86 131

172
172
172

ng stopped at epoch 21 for optimal performance.

The evaluation result of the final deep learning modelof above, which produced the test accuracy of 76.16%. The

training halted prematurely in epoch 21 so that the model would not experience overfitting and provide optimal

results. The classification report indicates that normal cases are highly classified well by the model as it gets

perfect recall (1.00) and a robust F1-score (0.86). This makes it very near to the fact that almost all normal in-

stances are classified well. However, the abnormal cases performed badly since both precision and recall dropped

to 0.00, indicating total misclassification of that class. Finally, the weighted average F1 score of 0.66 shows im-

balance, indicating that while the model is reliable for normal prediction, considerable optimization has to be done

to enhance its performance in abnormal event detection, thus leading to a more balanced performance over classes.

Al-Powered Vibration Prediction
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The above dashboard which is part of the Al-based ground vibration prediction system used to monitor seismic
activity through the use of sensor data and Al modeling. The image shows a map with multiple sensor locations
in green, yellow, and orange to depict status levels. Display on run time, besides, angular values and velocity
sensor readings with one of them flagged as something more critical than the others are. On this dashboard, there
is a time-series line chart showing acceleration changes with threshold indicators for further monitoring values in
the back. The right panel of the system shows alerts, historical seismic events with their magnitudes and dates,
and an Al model prediction with a 30% chance of a tremor in the next 30 minutes. Thus, the dashboard combines
real-time ground vibrations monitoring and historical analysis with predictive modeling, allowing early warning
and situation awareness. The layered architecture of the system guarantees the detection of sensor anomalies and
their validation with historical data to reduce false alarm rates. The integration of qualitative observations and

quantitative sensor inputs in the dashboard illustrates the strong Al application in seismic risk management.

LIMITATIONS

The proposed Al-based ground vibration prediction system, combining qualitative and quantitative observations,
shows strong potential but faces several limitations that must be addressed for greater reliability, scalability, and
adaptability in real-world use. Sensor Dependency & Accuracy: System performance depends heavily on the type,
number, and calibration of sensors. Insufficient or faulty sensors can cause data loss or inaccurate readings.
Qualitative Observation Variability: Human observations are subjective and can vary across individuals, climates,
or social contexts, leading to inconsistencies in the training data. Limited Environmental Scope: Experiments so
far have been conducted in controlled or semi-controlled settings, limiting model applicability to diverse terrains,
extreme weather, or unique geological conditions. Data Volume & Quality: The dataset is small and lacks long-
term continuous monitoring, preventing the model from learning temporal vibration patterns. Computational
Complexity: Deep learning models require high computational resources, making real-time deployment on low-
power or edge devices difficult. Integration Challenges: Merging quantitative sensor data with qualitative human
reports needs robust data fusion methods. The current system’s basic fusion mechanism may miss deeper corre-
lations. Prediction Uncertainty: The model does not yet provide confidence intervals or uncertainty estimates,
which are essential for risk-sensitive environments where small prediction errors could have serious conse-
quences. Scalability Issues: The system works in pilot setups but may struggle at large scale due to high infra-

structure costs, sensor maintenance needs, and the massive heterogeneous data inflow from widespread networks.

5. CONCLUSION

The proposed Al-based ground vibration prediction system demonstrates a promising step toward integrating both
quantitative sensor data and qualitative human observations for accurate and intelligent vibration monitoring. By
leveraging accelerometer and gyroscope measurements along with Al-driven analytics, the system provides a
more adaptive, data-informed approach compared to traditional threshold-based methods. However, despite its
effectiveness in controlled environments, the system’s current limitations including sensor dependency, subjective
variability in human inputs, limited environmental validation, and scalability issues highlight the need for further
refinement. Expanding the dataset with long-term, real-world monitoring across varied terrains will help the model

learn more complex temporal patterns and enhance its robustness. Additionally, improving data fusion techniques
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for integrating heterogeneous data sources and incorporating uncertainty estimation will strengthen the model’s
reliability in safety-critical applications.

In future development, emphasis should be placed on lightweight model optimization for deployment on edge or
IoT devices, enabling real-time monitoring in remote or resource-constrained locations. Establishing standardized
calibration protocols, automated retraining pipelines, and cloud-based analytics dashboards can further improve
operational scalability.

Overall, while the system represents a significant innovation in vibration detection and risk prediction, continuous
research, large-scale validation, and the inclusion of explainable Al methods are essential to make it a practical,

trustworthy, and industry-ready solution for applications in mining, construction, and seismic safety monitoring.
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