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Abstract - To mitigate construction, industrial process, and seismic risks, in this paper, we introduce a hybrid AI-

based vibration monitoring system. The system records multi-dimensional vibration data and analyzes it using a 

deep learning pipeline to forecast vibration pattern and magnitude. It employs a mechanically optimized beam for 

improved sensitivity with reduced noise, and a six-axis IMU containing an accelerometer and gyroscope. Its real-

time alert in early warning mode is better than conventional methods by offering up to 5x signal gain and enhanced 

micro-vibration detection. Scalable and cost-effective design in its support encompasses urban planning, seismic 

resilience, and industrial safety. 

Keywords - Ground Vibration Prediction, AI-Based Monitoring, Accelerometer and Gyroscope, Inertial Meas-

urement Unit (IMU), Real-Time Alert System, Early Warning System, Seismic Activity Monitoring, Human feed-

back, Vibration Signal Denoising. 

1. INTRODUCTION 

There has been more construction, mining, and seismic activity in the past few years, which has increased the 

need for improved vibration detection and prediction systems. Conventional ground vibration monitoring tech-

niques tend to depend on cumbersome, costly seismographs or outdated mechanical systems. These techniques 

are not sensitive or real-time enough for early warnings. This project offers a wiser, more affordable alternative: 

an AI-based vibration prediction system which employs accelerometers and gyroscopes contained in a six-axis 

IMU. 

Using AI algorithms such as LSTM or Random Forest, we examine sensor readings to forecast future high-inten-

sity vibrations and send real-time alerts. This two-sensing technique blends quantitative information from the 

IMU with qualitative observations, providing full vibration profiling on multiple axes. This system can alert indi-

viduals to potential issues in regions where there may be slight tremors or numerous human motions. Rather than 

observing only by hand or with simple warning systems, it applies machine learning to detect patterns. This com-

bination of techniques catches subtle signs that larger vibrations are on the way, which is helpful both for keeping 

humans safe and designing cities. 
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This system isn't guesswork about what will happen; it's also being reliable regardless of what. Things such as 

what kind of ground, how buildings are constructed, and what is below can influence how vibrations behave. The 

traditional methods of discovering trouble aren't always accurate these days. This system relies on intelligent 

computers that help us learn, so it improves at detecting problems and validating warnings even when things get 

difficult. 

The new project approach is user centered. It ensures that the platform remains straightforward to use for all, 

regardless of technical competence. The interface is simplified with easy-to-use visual dashboards and unambig-

uous alert notifications. This makes it easy for users to clearly grasp system outputs and make decisions based on 

valuable insights rather than be overwhelmed by complex technical information. The proposed solution also con-

nects with current world-wide initiatives towards intelligent city development and sustainability. As cities grow, 

infrastructure faces new challenges such as continued construction, higher traffic vibrations, and external pres-

sures. As cities grow, infrastructure faces new challenges like ongoing construction, increased vibrations from 

traffic, and environmental pressures. By using AI to monitor vibrations in urban areas, the system helps with better 

infrastructure planning, supports the protection of structural integrity, and promotes the goals of sustainable urban 

management. 

2. LITERATURE REVIEW 

Try and Gebhard highlighted the flexibility of IMU-based vibration monitoring beyond lab settings. Their work 

showed that small sensors could be integrated into wearable systems or attached to structures, enabling continuous 

activity tracking. The versatility of IMU sensors demonstrates their potential for broader use in civil and industrial 

applications where portability and cost matter [1]. Xie et al. applied Particle Swarm Optimization (PSO) to predict 

ground vibration velocity from long-hole blasting, showing the advantages of optimization algorithms over static 

models due to their adaptability to explosive force changes. This data-driven approach emphasizes the potential 

of combining AI techniques with sensor data to enhance prediction accuracy [2]. They also found that PSO-based 

models reduce computation compared to conventional iterative optimization, making them suitable for real-time 

applications such as construction blasting or seismic safety monitoring [2]. Ala et al. developed an Explainable 

AI (XAI)-based model for predicting and improving blast-induced ground vibrations in surface mining. The 

model’s interpretability helped stakeholders understand the reasoning behind predictions, stressing the importance 

of transparency in AI monitoring systems used in critical environments [3]. Their study further enhanced XAI by 

allowing domain experts to adjust the model based on variable importance. This collaboration between human 

knowledge and machine intelligence increased model trustworthiness and practicality in real-world mining oper-

ations, ensuring responsible decision-making [3].  

Firoozi and Firoozi conducted a systematic review of hybrid ML methods such as ensemble models and deep 

neural networks for predicting peak ground vibration. They highlighted the importance of feature engineering and 

signal preprocessing in handling accelerometer data, aligning with our real-time sensor data fusion approach [4]. 

A Springer review examined multiple AI and optimization techniques including Genetic Algorithms, Random 

Forests, and Gradient Boosting for ground vibration prediction, providing a foundation for our comparative model 

analysis [5]. 
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In mining, researchers proposed a swarm-optimized deep neural network for forecasting blast-induced vibration 

intensity in open-pit mines. The model performed effectively on noisy datasets, showing its potential to handle 

accelerometer and gyroscope data in real-world settings [6]. Research using Relevance Vector Machines (RVMs) 

for predicting Peak Particle Velocity (PPV) in quarry blasting showed better performance with sparse data than 

Support Vector Machines, highlighting the need for models capable of handling limited data in vibration predic-

tion systems [7]. 

Youwai and Pamungmoon used an explainable AI model to forecast pile-driving vibrations based on time-series 

IMU data, emphasizing the importance of preserving temporal features during preprocessing. This directly in-

forms the structure of our vibration detection system using gyroscopes and accelerometers [8]. Teixeira et al. 

explored neural machine translation to convert seismic wave patterns into petrophysical models. Though focused 

on geology, their method offers a novel way to interpret ground vibrations as a "language," which could inform 

our research [9]. Finally, the Wiley review on sensor-integrated machine systems emphasized combining physical 

sensors with AI analytics for real-time industrial monitoring, supporting our goal of integrating human insights 

with quantitative IMU data [10]. 

 

3. PROPOSED METHEDOLOGY 

Micro-electromechanical systems (MEMS) like the 6-axis Inertial Measurement Unit (IMU) combining an accel-

erometer and a gyroscope are vital for detecting abnormal vibrations in terrains, structures, and machinery. The 

accelerometer measures linear acceleration (e.g., shaking), while the gyroscope captures angular rotation (e.g., 

tilting). Undetected ground vibrations can signal structural failure or natural tremors. Traditional threshold-based 

systems often miss subtle patterns or raise false alarms. To address this, a machine learning model can analyze 

patterns, detect anomalies, and adapt using human-labeled data. The proposed system integrates sensor data, smart 

feature extraction, ML-based real-time classification, and a feedback loop for continuous improvement ensuring 

consistent detection and timely alerts. 

Step-by-Step Methodology 

1. Sensor Integration: The 6-axis IMU (MPU6050) measures acceleration (ax, ay, az) and rotation (gx, gy, gz), 

connected via I2C to a microcontroller (Arduino/Raspberry Pi) at 50–100 Hz sampling. 

2. Data Collection: The IMU streams real-time motion data with timestamps, stored locally or sent to a server. 

3. Signal Pre-processing: A low-pass Butterworth filter removes noise; mean and median filters reduce jitters. 

Features are extracted post-cleaning for fair model training. 

4. Feature Extraction: 

 Acceleration Magnitude: A = √(ax² + ay² + az²) 

 Gyroscope Magnitude: G = √(gx² + gy² + gz²) 

 Along with mean, max, std. dev., RMS, and dominant frequency (via FFT). 

5. Data Labelling: Human experts label events as normal, moderate, or abnormal to create supervised datasets. 

6. Model Training: Lightweight models like Random Forest or Decision Tree are trained and evaluated using 

accuracy, precision, and F1-score. 

7. Alert Triggers (Threshold + AI): 

    Normal: A < 0.3g, G < 50°/s 
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    Moderate: 0.3 ≤ A ≤ 0.6g 

    Abnormal: A > 0.6g or G > 100°/s 

   AI-driven predictions trigger alerts even if thresholds aren’t met. 

8. Alert System: Detected anomalies send notifications via Wi-Fi/Bluetooth to a dashboard/app with timestamp, 

location, and severity. On-site indicators (LED/Buzzer) also trigger. 

9. User Feedback & Retraining: Users can dismiss false alarms; this feedback retrains and refines the model for 

better accuracy. 

10. Real-time Dashboard: Displays live acceleration/rotation plots and classification status (e.g., Green = Normal, 

Red = Alert) with logs for analysis. 

11. Multi-Sensor Extension: Multiple IMUs across zones sync to a central server for faster collective decisions. 

12. Scalability & Future Work: Applicable to bridges, mines, and earthquake zones. Long-term data can support 

forecasting using LSTMs or ConvNets for predictive insights. 

 

4. Working Model of AI Powered Ground Vibration Prediction 

 

 
1. Vibration Source: It is the source of vibrations itself-from construction activities, machinery, and traffic to 

natural tremors. It creates mechanical waves that travel into the ground or structures.  

2. 6 Axis IMU sensor (Accelerometer + Gyroscope)  

A 6-DOF (Degrees of Freedom) sensor capturing following: 

 Linear acceleration (through accelerometer) in X, Y, and Z axes. 

 Angular velocity (through gyroscope) in pitch, roll, and yaw. 

Captures subtle to strong vibrations in real time. Physically connected to NI myRIO. 

3. NI myRIO (Data Acquisition Unit) : Based on LabVIEW, the central controller in the system has the follow-

ing responsibilities to execute for the final output of the result:  
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To gather raw sensor data through analog/digital I/O, Perform real-time processing and interface with software 

modules (through LabVIEW) Advantage: Compact, real-time, educational-grade hardware suitable for vibration 

monitoring 

4. Signal Filtering and Pre-processing: Noise reduction using: Low-pass filters to eliminate high-frequency 

sensor noise. High-pass filters to ignore baseline drifts. Normalizes and smooths the raw vibration data for better 

ML input. To get the model prediction unbiased and on fair data so all the noise in the data get removed by feature 

extraction and filtering. So, the model gets the optimized decision output. 

5. Feature Extraction: Meaningful features for classification and prediction are extracted: RMS: measures en-

ergy of vibration. FFT: Frequency domain conversion of a signal for identification of dominant vibration frequen-

cies. Standard deviation: Measures variation of the signal and indicates severity of vibration. Kurtosis and Skew-

ness: Detect impulsive or spiky vibrations are associated mostly with faults or abi-normal activity. 

6. Machine Learning Classifier: The models Random Forest and LSTM are being used. They are trained with 

historical vibration data labelled as normal or not. Predicts: Whether incoming vibration is safe or critical, the 

source or severity according to the learned patterns. 

7. Detection Threshold and Model: A dual alertness system: Threshold Logic: Simple if-then rules (for example, 

if RMS > .9, trigger alert), ML model output: The predicted output is used in defining risk levels. It incorporates 

the smarts of an AI model into its hard-coded safety buffers for solid detection. 

 

8. Alert System: When vibration is dangerous: buzzer or LED is activated on myRIO, Optional: SMS/Email alert 

via LabVIEW web services or external GSM module. Alerts are instantaneous and local, with real-time processing 

by myRIO. 

9. Data Logging and Model Retraining: A log is maintained for every vibration incidence (either passing or 

non-passing limits) and associated parameters. This recorded data is potentially beneficial for enhancing model 

accuracy over time and for collecting information about the vibration trend of the machine. Furthermore, the 

model can also be periodically retrained on these newly collected data to catch up with the changes in the evolution 

of the environment. 

10. Feedback Loop: Data coming out of prediction/logging is used for retraining and fine-tuning the ML mode. 

Hence, the system tends to get smarter and more adaptive in course of time. 

 

Table 1: COMPARATIVE ANALYSIS 

Criteria Existing Models Proposed Model (Our System) 

Objective Basic seismic monitoring or scant 

vibration logging. Frequently does 

not include real-time alerting and 

ML. 

Real-time abnormal vibration pre-

diction and alerting with ML and 

myRIO. 

Sensor Types Primarily seismometers or isolated 

MEMS accelerometers. 

6-axis IMU sensors (accelerometer 

+ gyroscope) for precise 3D motion 

measurement. 

Processing Hardware Arduino, Raspberry Pi, or off-the-

shelf seismographs. 

NI myRIO real-time, FPGA-ena-

bled hardware for accuracy and 

high-speed I/O. 
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Feature Extraction Typically restricted to RMS or raw 

data recording. No in-depth analyt-

ics. 

Advanced capabilities such as 

RMS, FFT, kurtosis, entropy, spec-

tral centroid utilized for ML. 

Machine Learning Rarely exercised or employs tradi-

tional thresholds solely. 

Classifies vibrations as safe or 

risky using SVM / LSTM / kNN. 

Alert System Threshold-based alarms or visual-

only logs. No dynamic AI. 

AI-driven alarms using RMS/FFT 

+ ML output, displayed on UI or 

external device. 

Real-Time Analysis Delayed or post-event only. Real-time prediction and alarming 

from live streaming sensor data. 

Scalability Requires manual expansion, no AI 

adaptability. 

Can learn over time, get more ac-

curate with more data collected. 

Alert Trigger Range Hard-coded thresholds (e.g., 1.5g 

acceleration). 

Adaptive ML-based range; initial 

RMS alert ~0.8g–1.2g (customiza-

ble). 

Power Efficiency High power for seismographs or ex-

ternal GPUs. 

Low power embedded myRIO 

board with high-efficiency pro-

cessing. 

Cost Can be high due to specialized seis-

mic equipment. 

Cost-effective solution with stand-

ard IMU + myRIO + LabVIEW. 

Accuracy Moderate; tends to report after 

tremor. 

High: Pre-shock pattern and fre-

quency change detection using 

ML. 

 

IMPLEMENTATION 

 

Fig (2): Flow Chart of Implementation of Model 

1. Sensor Integration: A 6-axis inertial measurement unit consisting of a 3-dimensional accelerometer and a 3-

dimensional gyroscope has been selected to capture linear as well as angular vibrations from the ground or struc-

tural surface. 

2. Hardware Setup: The IMU has been mounted on the physical surface or structure selected for monitoring (for 

e.g. ground near construction/mining activities). 

3. Connection with NI myRIO: The IMU communicates with NI-myRIO through SPI or I2C protocol. 
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4. Data acquisition: The NI myRIO allows for continuous data acquisition from the sensor without interruption 

at real-time sampling rates relevant for analyzing vibration signals either 100 Hz or higher. 

5. Preprocessing in LabVIEW: After data cleansing, noise can be filtered away through digital filters like low-

pass filters or moving-average filters. 

6. Feature Extraction: LabVIEW estimates the following features from the real-time signal. RMS: Root Mean 

Square value signifies the power of the signal. FFT: Fast Fourier Transform refers to frequency components anal-

ysis. Standard deviation: It refers to the variation in signals. Signal Entropy Peak Acceleration: Measures sudden 

spikes in signal or randomness. 

7. The machine learning model integration: A pre-trained classification model is integrated in LabVIEW (via 

DLL or embedded logic) and classifies the signal as such: Normal vibration Abnormal/ dangerous vibration 

8. Dual Criteria Threshold Check: If the RMS value exceeds a chosen threshold (e.g., > 0.8g) OR if the ML 

model prediction is "abnormal", either event will trigger the alert. 

9. Activation of Alert System: So in essence, once abnormal vibration is detected: Optional SMS/ Email alert 

can be sent via the modules connected. 

10. Data Logging: All vibration data, predictions, and timestamps are stored locally for analysis and future train-

ing. It will also have user feedback data for qualitative observation therefore the better and optimized prediction 

will get. 

11. User Interface (UI): Real-time waveform display (accelerometer/ gyroscope plots) Current status (normal/ab-

normal) 

12. Alert logs and historical graph view: Real-Time Monitoring Loop. The system continuously monitors the 

environment in a loop for instant response to vibration events. 

Alert Triggering Criteria 

 

The alert system operates on acceleration (linear) and gyroscope (angular) thresholds to classify vibrations as 

minor, moderate, or critical. This setup minimizes false alarms while ensuring fast responses to hazards. Under 

normal conditions (accel < 0.3g, gyro < 50°/s), no alert is triggered filtering background noise and mild motion 

to keep monitoring efficient. For moderate vibrations (0.3g–0.6g), the system logs data and sends early notifica-

tions to the connected app. This pre-alert phase improves real-time awareness and helps detect early signs of 

imbalance, machinery faults, or small tremors. 

For critical vibrations (accel > 0.6g or gyro > 100°/s), the system triggers a red alert with siren and visual warnings. 

This high-priority response ensures immediate attention to risks like structural collapse, equipment failure, or 

seismic activity. 

Condition Sensor Range Threshold (example) Action 

Normal Acceleration < 0.3g; 

 Gyro < 50°/s 

No alert 

Moderate Vibration Acceleration between 0.3g–0.6g Log + Notify on app 

Abnormal Vibration (Alert) Acceleration > 0.6g;  

Gyro > 100°/s 

Red Alert + Siren 
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The tiered response design ensures precise classification with minimal false alerts by combining acceleration and 

angular thresholds. Alerts are sent promptly via SMS, email, push notifications, or integrated systems like sirens 

or display boards, ensuring redundancy even if one channel fails. 

Each alert includes: 

 Location of abnormal vibration/activity 

 Severity level (low, medium, or critical) 

 Identified cause (if available) 

 Safety instructions or action steps (e.g., evacuation, inspection). 

Alerts are categorized by severity critical alerts go directly to emergency services, while minor ones are logged 

for review. All alerts are stored for analysis to improve model accuracy and validate true or false events. 

Thus, the alert system bridges detection and human response, ensuring timely, accurate, and actionable infor-

mation to mitigate vibration-related risks. 

Table 2: Analysis of Sensor 

Criteria Single-Sensor (Accelerometer 

Only) 

Multi-Sensor (Accelerometer + 

Gyroscope) 

Type of motion captured Captures only linear acceleration, 

limiting vibration analysis. 

Captures both linear and angular 

motion, giving a complete profile. 

Measurement axes Provides three-axis measurement 

that may miss complex patterns. 

Extends to six degrees of freedom, 

offering richer vibration data. 

Rotational detection Fails to detect rotational disturb-

ances effectively. 

Detects even minor rotational vi-

brations through gyroscopes. 

Noise handling Struggles with filtering environ-

mental noise. 

Combines sensor data to improve 

noise filtering. 

Accuracy in noisy settings More prone to false positives from 

external interference. 

Cross-verification across sensors 

reduces false positives. 

System reliability Easy to implement but less reliable 

in dynamic environments. 

Performs well under dynamic con-

ditions with better robustness. 

Long-term stability Monitoring accuracy may drop due 

to sensor drift. 

Maintains stability by balancing 

accelerometer and gyroscope data. 

Sensitivity to microtremors May not detect subtle precursors of 

large vibrations. 

Detects small-scale tremors using 

combined sensing. 

Predictive potential Limited awareness restricts predic-

tive modeling accuracy. 

Enables stronger predictive mod-

eling with diverse data. 

Overall effectiveness Simpler but inadequate for ad-

vanced prediction. 

More complex but ensures higher 

accuracy and reliability. 

Noise handling Struggles with filtering environ-

mental noise. 

Combines sensor data to improve 

noise filtering. 
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Vibration detail Gives only basic intensity readings 

without direction. 

Provides detailed vibration pro-

files including direction and inten-

sity. 

Accuracy in noisy settings More prone to false positives from 

external interference. 

Cross-verification across sensors 

reduces false positives. 

System reliability Easy to implement but less reliable 

in dynamic environments. 

Performs well under dynamic con-

ditions with better robustness. 

 

RESULT: 

 

The evaluation result of the final deep learning modelof above, which produced the test accuracy of 76.16%. The 

training halted prematurely in epoch 21 so that the model would not experience overfitting and provide optimal 

results. The classification report indicates that normal cases are highly classified well by the model as it gets 

perfect recall (1.00) and a robust F1-score (0.86). This makes it very near to the fact that almost all normal in-

stances are classified well. However, the abnormal cases performed badly since both precision and recall dropped 

to 0.00, indicating total misclassification of that class. Finally, the weighted average F1 score of 0.66 shows im-

balance, indicating that while the model is reliable for normal prediction, considerable optimization has to be done 

to enhance its performance in abnormal event detection, thus leading to a more balanced performance over classes. 
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The above dashboard which is part of the AI-based ground vibration prediction system used to monitor seismic 

activity through the use of sensor data and AI modeling. The image shows a map with multiple sensor locations 

in green, yellow, and orange to depict status levels. Display on run time, besides, angular values and velocity 

sensor readings with one of them flagged as something more critical than the others are. On this dashboard, there 

is a time-series line chart showing acceleration changes with threshold indicators for further monitoring values in 

the back. The right panel of the system shows alerts, historical seismic events with their magnitudes and dates, 

and an AI model prediction with a 30% chance of a tremor in the next 30 minutes. Thus, the dashboard combines 

real-time ground vibrations monitoring and historical analysis with predictive modeling, allowing early warning 

and situation awareness. The layered architecture of the system guarantees the detection of sensor anomalies and 

their validation with historical data to reduce false alarm rates. The integration of qualitative observations and 

quantitative sensor inputs in the dashboard illustrates the strong AI application in seismic risk management. 

 

LIMITATIONS 

The proposed AI-based ground vibration prediction system, combining qualitative and quantitative observations, 

shows strong potential but faces several limitations that must be addressed for greater reliability, scalability, and 

adaptability in real-world use. Sensor Dependency & Accuracy: System performance depends heavily on the type, 

number, and calibration of sensors. Insufficient or faulty sensors can cause data loss or inaccurate readings. 

Qualitative Observation Variability: Human observations are subjective and can vary across individuals, climates, 

or social contexts, leading to inconsistencies in the training data. Limited Environmental Scope: Experiments so 

far have been conducted in controlled or semi-controlled settings, limiting model applicability to diverse terrains, 

extreme weather, or unique geological conditions. Data Volume & Quality: The dataset is small and lacks long-

term continuous monitoring, preventing the model from learning temporal vibration patterns. Computational 

Complexity: Deep learning models require high computational resources, making real-time deployment on low-

power or edge devices difficult. Integration Challenges: Merging quantitative sensor data with qualitative human 

reports needs robust data fusion methods. The current system’s basic fusion mechanism may miss deeper corre-

lations. Prediction Uncertainty: The model does not yet provide confidence intervals or uncertainty estimates, 

which are essential for risk-sensitive environments where small prediction errors could have serious conse-

quences. Scalability Issues: The system works in pilot setups but may struggle at large scale due to high infra-

structure costs, sensor maintenance needs, and the massive heterogeneous data inflow from widespread networks. 

 

5. CONCLUSION 

The proposed AI-based ground vibration prediction system demonstrates a promising step toward integrating both 

quantitative sensor data and qualitative human observations for accurate and intelligent vibration monitoring. By 

leveraging accelerometer and gyroscope measurements along with AI-driven analytics, the system provides a 

more adaptive, data-informed approach compared to traditional threshold-based methods. However, despite its 

effectiveness in controlled environments, the system’s current limitations including sensor dependency, subjective 

variability in human inputs, limited environmental validation, and scalability issues highlight the need for further 

refinement. Expanding the dataset with long-term, real-world monitoring across varied terrains will help the model 

learn more complex temporal patterns and enhance its robustness. Additionally, improving data fusion techniques 
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for integrating heterogeneous data sources and incorporating uncertainty estimation will strengthen the model’s 

reliability in safety-critical applications. 

In future development, emphasis should be placed on lightweight model optimization for deployment on edge or 

IoT devices, enabling real-time monitoring in remote or resource-constrained locations. Establishing standardized 

calibration protocols, automated retraining pipelines, and cloud-based analytics dashboards can further improve 

operational scalability. 

Overall, while the system represents a significant innovation in vibration detection and risk prediction, continuous 

research, large-scale validation, and the inclusion of explainable AI methods are essential to make it a practical, 

trustworthy, and industry-ready solution for applications in mining, construction, and seismic safety monitoring. 
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